首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   261篇
  免费   13篇
  2020年   2篇
  2019年   2篇
  2018年   7篇
  2017年   2篇
  2016年   1篇
  2015年   6篇
  2014年   11篇
  2013年   22篇
  2012年   11篇
  2011年   15篇
  2010年   12篇
  2009年   8篇
  2008年   16篇
  2007年   12篇
  2006年   9篇
  2005年   9篇
  2004年   11篇
  2003年   9篇
  2002年   10篇
  2001年   12篇
  2000年   16篇
  1999年   10篇
  1998年   4篇
  1997年   6篇
  1996年   4篇
  1995年   2篇
  1994年   5篇
  1992年   9篇
  1991年   4篇
  1990年   4篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1979年   2篇
  1978年   3篇
  1976年   1篇
  1974年   1篇
排序方式: 共有274条查询结果,搜索用时 312 毫秒
1.
A cDNA coding for ovine prostaglandin endoperoxide (PGH) synthase-1 was used to construct a recombinant baculovirus which was expressed in Spodoptera frugiperda (Sf9) insect cells. Two proteins reactive with anti-PGH synthase antibody were produced. A larger protein (Mr = 72,000) coelectrophoresed with native enzyme; a smaller, more abundant protein (Mr = 66,000) was unglycosylated enzyme. About 90% of both the immunoreactivity and the cyclooxygenase activity were present in a low speed (10(5) g x min) pellet; variable but low peroxidase activities were observed in this fraction. The specific cyclooxygenase activity of solubilized PGH synthase-1 from Sf9 cells was 56 units/mg versus 112 units/mg for the same cDNA expressed in cos-1 cells. The baculovirus-insect cell system is not ideal for generating large amounts of active PGH synthase-1 apparently because of inefficient N-glycosylation.  相似文献   
2.
3.
E. coli was found to grow anaerobically on lactate in the presence of trimethylamine N-oxide (TMANO), reducing it to trimethylamine. Anaerobic growth on glucose was promoted in the presence of TMANO. When a culture grown in complex medium was transferred to defined medium, growth on glucose and ammonia took place in the presence of TMANO after consumption of complex nutrients introduced with the preculture, in contrast to growth in nitrate respiration. The amounts of ethanol, succinate, and lactate among the fermentation products were decreased and that of acetate was increased in the presence of TMANO. Formate generation was much reduced at pH 7.4, whereas stoichiometric formation of formate was observed in the absence of TMANO. Cells grown anaerobically in the presence of TMANO had a higher activity of amine N-oxide reductase than cells grown under other conditions. The content of cytochrome-558 was elevated in the presence of TMANO during growth in complex medium. Cytochrome c-552 found in cells grown in diluted complex medium or defined medium in the presence of TMANO was oxidized by TMANO in cell extracts. The molar growth yield on glucose was higher in the presence of TMANO than in its absence and lower than that in the presence of nitrate.  相似文献   
4.
Prostaglandin endoperoxide (PGH) synthase has a single iron protoporphyrin IX which is required for both the cyclooxygenase and peroxidase activities of the enzyme. At room temperature, the heme iron is coordinated at the axial position by an imidazole, and about 20% of the heme iron is coordinated at the distal position by an imidazole. We have used site-directed mutagenesis to investigate which histidine residues are involved in PGH synthase catalysis and heme binding. Individual mutant cDNAs for ovine PGH synthases were prepared with amino acid substitutions at each of 13 conserved histidines. cos-1 cells were transfected with each of these cDNAs, and the cyclooxygenase and peroxidase activities of the resulting microsomal PGH synthases were measured. Mutant PGH synthases in which His-207, His-309, or His-388 was replaced with either glutamine or alanine lacked both activities. Gln-386 and Ala-386 PGH synthase mutants exhibited cyclooxygenase but not peroxidase activities. Other mutants exhibited both activities at varying levels. Because binding of heme renders native PGh synthase resistant to cleavage by trypsin, we examined the effects of heme on the relative sensitivities of native, Ala-204, Ala-207, Ala-309, Ala-386, and Ala-388 mutant PGH synthases to trypsin as a measure of the heme-protein interaction. The Ala-309 PGh synthase mutant was notably hypersensitive to tryptic cleavage, even in the presence of exogenous heme; in contrast, the native enzyme and the other alanine mutants exhibited similar, lower sensitivities toward trypsin and, except for the Ala-386 mutant, were partially protected from trypsin cleavage by heme. Preincubation of the native and each of the alanine mutant PGH synthases, including the Ala-309 mutant, with indomethacin protected the proteins from trypsin cleavage. Thus, all the mutant proteins retain sufficient three-dimensional structure to bind cyclooxygenase inhibitors. Our results suggest that His-309 is one of the heme ligands, probably the axial ligand, of PGH synthase. Two other histidines, His-207 and His-388, are essential for both PGH synthase activities suggesting that either His-207 or His-388 can serve as the distal heme ligand; however, the trypsin cleavage measurements imply that neither His-207 nor His-388 is required for heme binding. This is consistent with the fact that only 20% of the distal coordination position of the heme iron of PGH synthase is occupied by an imidazole side chain.  相似文献   
5.
Aspirin selectively acetylates Ser-530 of prostaglandin endoperoxide (PGH) synthase-1. This causes inactivation of the cyclooxygenase activity of the enzyme, but does not appreciably affect its peroxidase activity. Although the aspirin-acetylated enzyme is inactive, we found that PGH synthase-1 in which Ser-530 had been replaced with an alanine was catalytically active; accordingly, we proposed that aspirin inhibits cyclooxygenase activity by placing a larger than normal side chain at position 530 thereby interfering with arachidonate binding (DeWitt, D.L., El-Harith, E. A., Kraemer, S. A., Andrews, M. J., Yao, E. F., Armstrong, R. L., and Smith, W. L. (1990) J. Biol. Chem. 265, 5192-5198). As a further test of this hypothesis we have used site-directed mutagenesis and transient expression in cos-1 cells to prepare and characterize five additional substitutions of Ser-530. Consistent with our proposal, the presence of amino acids with bulky side chains at position 530 inhibited cyclooxygenase activity and decreased the apparent affinity of the enzyme for arachidonate. In related work, we characterized a series of mutant PGH synthases-1 having substitutions at residues adjoining Ser-530, including Phe-529, Leu-531, Lys-532, and Gly-533, in order to evaluate the contributions of each residue to cyclooxygenase catalysis. The most significant conclusion of this part of the study is that residues 529-533 all are important for the peroxidase activity as well as the cyclooxygenase activity of PGH synthase-1. Phe-529, in particular, was found to be critical for PGH synthase-1 structure and catalysis; some substitutions at this position led to the production of proteins lacking about 100 amino acids from their COOH termini.  相似文献   
6.
Summary Two extracellular -fructofuranosidases (E-1 andE-2) fromAureobasidium sp. ATCC 20524, producing 1-kestose (1F--fructofuranosyl-sucrose) from sucrose, were purified to homogeneity. Molecular weights of the enzymes were estimated to be about 304000 (E-1) and 315000 (E-2) Da by gel filtration. The enzymes contained 33% (w/w) (E-1) and 27% (w/w) (E-2) carbohydrate. TheK m values for sucrose ofE-1 andE-2 andE-2 were 0.34 and 0.28 M, respectively. were 0.34 and 0.28 M, respectively. The enzymatic profiles of these enzymes were almost identical to intracellular enzymesP-1 andP-2 except for the differences in carbohydrate content andK m values ofE-2 andP-2.  相似文献   
7.
8.
9.
ABSTRACT

Japanese apricot, Prunus mume Sieb. et Zucc., biosynthesizes the l-phenylalanine-derived cyanogenic glucosides prunasin and amygdalin. Prunasin has biological properties such as anti-inflammation, but plant extraction and chemical synthesis are impractical. In this study, we identified and characterized UGT85A47 from Japanese apricot. Further, UGT85A47 was utilized for prunasin microbial production. Full-length cDNA encoding UGT85A47 was isolated from Japanese apricot after 5?- and 3?-RACE. Recombinant UGT85A47 stoichiometrically catalyzed UDP-glucose consumption and synthesis of prunasin and UDP from mandelonitrile. Escherichia coli C41(DE3) cells expressing UGT85A47 produced prunasin (0.64 g/L) from racemic mandelonitrile and glucose. In addition, co-expression of genes encoding UDP-glucose biosynthetic enzymes (phosphoglucomutase and UTP-glucose 1-phosphate uridiltransferase) and polyphosphate kinase clearly improved prunasin production up to 2.3 g/L. These results showed that our whole-cell biocatalytic system is significantly more efficient than the existing prunasin production systems, such as chemical synthesis.  相似文献   
10.
To search precursors of ethylene in banana fruits, ethylene formation from acetate-2-14C and fumarate-2,3-14C by banana slices was studied. Ethylene-14C formation from acetate-2-l4C was reduced by the addition of malonate or β-hydroxypropionate, and it was enhanced in a sealed chamber in comparison with the case in an aeration chamber. No label of fumarate-2,3-14C was incorporated into ethylene.

From these facts it was suggested that acetate-2-14C was incorporated into ethylene via malonate and β-hydroxypropionate. Participation of fumarate in ethylene biosynthesis of banana fruits was ruled out. β-Hydroxypropionate was postulated as an effective precursor of ethylene formation from acetate-2-l4C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号